Study areas

Description and purpose of the study areas

Within the four-pillar model, the observatories take a central role. Through regular working meetings with the management team and other participants, practice-relevant results as well as technical and experimental knowledge can be exchanged. A list of observatories as well as corresponding contact persons are described below. In principle, most study areas are heavily instrumented for long-term hydraulic and chemical groundwater observations. These long-term observations are and should be supplemented by field experiments and investigations. The observatories are managed by the respective research group or practice partners to ensure long-term operability. Synergies will be created to promote joint and future experiments by a wide variety of research groups.


  • Develop water management measurement network (real-time measurements).
  • Environmental research for urban water management and water protection (including groundwater).
  • Water infrastructure development.
  • Process understanding urban water cycle and transport of pollutants.


Between 2010 and 2014, the Chriesbach was renaturalized over a large section. The upgrading project was initiated by the Cantonal Office for Waste, Water, Energy and Air (AWEL) of the Canton of Zurich and with considerable and broad support from the federal government, naturmade star fund, EWZ (Electricity company of the city of Zurich), Eawag and the City of Dübendorf. The expanded area not only allows the river to open up new flow paths, but also creates new habitats for many animals and plants, thus fulfilling an important ecological networking function. Among the local population, the river section is regarded as a popular recreational area and, for Eawag and water research, as an obvious test study area.


Initial groundwater measurements were already carried out during revitaliation. Today, five groundwater monitoring wells, a multiparameter probe for quality measurements and a discharge monitoring well are operated in (quasi) real time. Furthermore, the site serves as a test field for field experiments.

Main contact:

Britt, Reto;

Schirmer, Mario, Prof. Dr.;



Popp, A. L., Manning, C. C., Brennwald, M. S., & Kipfer, R. (2020). A new in situ method for tracing denitrification in riparian groundwater. Environmental Science & Technology, 54(3), 1562-1572.

Popp, A. L. (2019). Tracing surface water-groundwater interactions with in-situ noble gas analysis (Doctoral dissertation, ETH Zurich).

Bryner, A. (2017). Der Chriesbach lädt wieder zum Verweilen ein. Aqua viva

von Lindern, E., Schirmer, M., Lichtensteiger, T., Bryner, A., & Tobias, R. (2016). Erfolgskontrolle einer Bachrevitalisierung im urbanen Raum-das Beispiel Chriesbach. Wasser Energie Luft, 108, 63-69.

Kurth, A. M., Weber, C., & Schirmer, M. (2015). How effective is river restoration in re-establishing groundwater-surface water interactions?-A case study. Hydrology and Earth System Sciences, 19(6), 2663-2672.

von Lindern, E., Pahud, L., & Tobias, R. Sozialwissenschaftliche Erfolgskontrolle der Chriesbach Revitalisierung.

Peter-Verbanets, M., & Pronk, W. (2008). Mechanisms of biofouling of UF membranes and evaluation of pre-treatment on fouling of UF membranes.

Huber, S. (2007). The impact of light pollution on suburban stream ecosystems (Doctoral dissertation, EAWAG, The Swiss Federal Institute of Aquatic Science and Technology).

Kaenel, B. R., & Uehlinger, U. (1999). Aquatic plant management: ecological effects in two streams of the Swiss Plateau. In Biology, Ecology and Management of Aquatic Plants (pp. 257-263). Springer, Dordrecht.

Kaenel, B. R., & Uehlinger, U. (1998). Effects of plant cutting and dredging on habitch 4. Nov. 1998 conditions in streams BIBLIOTHEK. Arch. Hydrobiol, 143(3), 257-273.

Mensch, R., Kaenel, B., & Uehlinger, U. (1997). Kurzfristige Auswirkungen einer Entkrautung auf einen Mittellandbach (Chriesbach bei Dübendorf, ZH). Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 142, 23-31.


  • To better understand groundwater - surface interaction processes.
  • Development and improvement of complex physical groundwater models
  • Development of innovative tracer methods
  • Process understanding of hydrgeological transport and reaction processes


The Upper Emme valley is a pre-alpine, alluvial catchment situated on the northern border of the Swiss Alps. The valley bottoms in the lower part of the catchment consist of coarse, quaternary alluvial sandy gravel (80% gravel and 20% sand), forming a highly conductive unconfined aquifer. The catchment is spread over an altitude of 673-2221 m asl and covers an area of 194 km2, which is drained by two rivers, the Emme River and the Roethebach tributary, with an average discharge of 4.4 and 0.7 m3/s, respectively. These rivers are extremely dynamic and provide the main source of recharge to the alluvial aquifer of the Upper Emme valley. The lowest part of the catchment consists of the main Emme River valley with an average topographic gradient of 0.9%. Approximately 8 km upstream of the outlet, the tributary enters the main valley. The whole aquifer, which extends into the tributary valley, spans an approximate area of 6 km2. In the area of the studied aquifer, the valley has a width of 200-400 m. The aquifer is limited underneath by impermeable sediments of the freshwater molasses. The aquifer serves as an important drinking water resource and provides 45% of the drinking water consumed in the region of the Swiss capital Bern. The wellfield is situated on the Ramsei Plain, toward the outlet of the valley. Groundwater (GW) is pumped in roughly equal parts from eight (single-depth) suction wells spaced approximately 100 m apart and aligned in parallel to the river. The distance between the drinking water wells and the Emme River is 300 m toward the river bend marking the upstream end of the Ramsei Plain, and 125 m parallel to the wells. Water is pumped from a depth of 10 m in the three upstream wells, and from a depth of 15 m in the five downstream wells. In total, the drinking water station pumps 0.4 m3/s of GW. This GW abstraction is substantial relative to the total water balance of the system: it can amount to up to 50% of the total outflow of surface water (SW) and GW out of the valley. The aquifer around the Ramsei Plain has an average thickness of 25 m. The maximum vertical extent of the aquifer at the Ramsei Plain is 46 m. Pumping tests revealed average aquifer hydraulic conductivities (K) between 200 and 500 m/d, with maximal values of more than 1,350 m/d.
At the drinking water station, the average annual precipitation is 1,300 mm, the potential evapotranspiration 550 mm, and the average annual air temperature is 8°C. In very dry summers and very cold winters, segments of the Emme River may run completely dry. Based on measured water temperature and electrical conductivity in the SW directly above the riverbed near the drinking water wellfield, alternating locations of losing and gaining conditions are identified, indicating that there is a complex pattern of interactions between SW and GW.


A dense measurement network for the observation of a multitude of hydrological and climatic variables covers the entire alluvial valley. SW discharge is continuously monitored at a 10 min interval at four river gauging stations, with one station located at the outlet of the catchment 1.5 km downstream of the wellfield, and two stations measuring the inflow from the Emme River and the tributary into the main valley, 5.5 km upstream of the wellfield. GW levels are continuously recorded at 10-15 min intervals in more than 30 piezometers. Fourteen of these piezometers are located in the immediate proximity of the drinking water wellfield. These piezometers are screened in the upper 10-15 m of the soil. A strategic multilevel piezometer located immediately upstream of the drinking water wellfield, just across the river, was installed to allow sampling of water also at higher depths than the other piezometers and the drinking water wells. The screened depths are 0-10, 11.5-13.5, 16-18, and 21.5-23.5 m. The study site is managed by the CHYN .

Main contact:

Brunner Philip, Prof. Dr.; 

Hunkeler Daniel, Prof. Dr.;

Popp, A. L., Pardo-Álvarez, Á., Schilling, O. S., Scheidegger, A., Musy, S., Peel, M., ... & Kipfer, R. (2021). A framework for untangling transient groundwater mixing and travel times. Water resources research, 57(4), e2020WR028362.

Tang, Q., Schilling, O. S., Kurtz, W., Brunner, P., Vereecken, H., & Hendricks Franssen, H. J. (2018). Simulating Flood?Induced Riverbed Transience Using Unmanned Aerial Vehicles, Physically Based Hydrological Modeling, and the Ensemble Kalman Filter. Water resources research, 54(11), 9342-9363.

Schilling, O. S. (2017). Advances in characterizing surface water-groundwater interactions: combining unconventional data with complex, fully-integrated models (Doctoral dissertation, Université de Neuchâtel).

Schilling, O. S., Gerber, C., Partington, D. J., Purtschert, R., Brennwald, M. S., Kipfer, R., ... & Brunner, P. (2017). Advancing physically-based flow simulations of alluvial systems through atmospheric noble gases and the novel 37Ar tracer method. Water resources research, 53(12), 10465-10490.

Käser, D., & Hunkeler, D. (2016). Contribution of alluvial groundwater to the outflow of mountainous catchments. Water Resources Research, 52(2), 680-697.

Kropf, P., Schiller, E., Brunner, P., Schilling, O., Hunkeler, D., & Lapin, A. (2014). Wireless mesh networks and cloud computing for real time environmental simulations. In Recent advances in information and communication technology (pp. 1-11). Springer, Cham.

Poffet, D. (2011), Interactions nappe-rivière et stockage dans l'aquifère de la Haute-Emme: Approche par la modélisation numérique, MSc thesis, 134 pp., Centre for Hydrogeology and Geothermics, University of Neuchâtel (Switzerland).

Technical reports:

Geotechnisches Institute (2005), EWB-Grundwasserfassungen Aeschau: Gesuch um Konzessionserneuerung; Fachbericht Hydrologie/Hydrogeologie, Zürich.

Blau, R. V., and F. Muchenberger (1997), Grundlagen für Schutz und Bewirtschaftung der Grundwasser des Kantons Bern: Nutzungs-, Schutz- und Überwachungskonzept für die Grundwasserleiter des obersten Emmentals, zwischen Emmenmatt, Langnau und Eggiwil, Synthesebericht, Wasser-u. Energiewirt. des Kantons Bern, Bern.

Blau, R. V. (1991), Grundlagen für Schutz und Bewirtschaftung der Grundwasser des Kantons Bern: Hydrogeologie Oberstes Emmental zwischen Emmenmatt, Langnau und Eggiwil, Zwischenbericht 1991, Wasser-u. Energiewirt. des Kantons Bern, Bern.

Würsten, M. (1991), GWB-Hydrogeologische Untersuchungen Aeschau: Schlussbericht, Geotechnisches Inst., Zürich.

Blau, R. V. (1984), Grundlagen für Schutz und Bewirtschaftung der Grundwasser des Kantons Bern: Hydrogeologie Rötenbachtal, Wasser-u. Energiewirt. des Kantons Bern, Bern.


  • Develop water management measurement network (real-time measurements).
  • Environmental research for urban water management and water protection (including groundwater).
  • Water infrastructure development.
  • Process understanding urban water cycle and transport of pollutants.


The catchment area of the upper Kempttal in the Swiss Plateau is located about 10 km east of the city of Zurich and covers an area of about 35 km2 with an elevation increasing from NW-SE: 520 m a.s.l. in the lower outlet area (NW) and up to about 900 m a.s.l. in the upper headwaters (SE). The catchment area includes a small network of tributaries flowing into the Kempt, which have been modified by channelization and deepening of the riverbed in the central municipality of Fehraltorf. The runoff in the Kempt is supplemented by wastewater discharged near the outfall and is considered here as an integral contribution to the base flow of the river. The near-surface geology consists of unconsolidated fluvio-glacial sediments that host an unconfined aquifer. The deepest zones of the aquifer are in the central valley and are reported to be 10-20 m, with thinner sections between 1 and 8 m at the valley margins. The residence time of the groundwater is estimated to be relatively short, on the order of months to 2 years. The aquifer provides about 80% of the freshwater resources for local communities.


Modern sensors and innovative remote data transmission (--> LoRaMesh) will be used to record, among other things, precipitation, runoff, water levels at various points in the sewer system, at outlets to urban water bodies, in the water body itself, and in groundwater to better understand relationships between precipitation and associated runoff and transport processes in urban areas. In addition, wastewater and water quality is monitored. With the current expansion phase and extension of the meshed LoRa® sensor and radio network to more than 80 different sensor nodes, which are installed both above ground and underground (canal), an extremely efficient transmission is achieved, especially for range-critical applications underground. The Urban Hydrological Field Laboratory is managed by Department of Urban Water Management, Eawag.

Main contact person:

Rieckermann, Joerg, Dr.;

Weatherl, R. K., Henao Salgado, M. J., Ramgraber, M., Moeck, C., & Schirmer, M. (2021). Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeology Journal, 29(7), 2411-2428.

Ramgraber, M., Weatherl, R., Blumensaat, F., & Schirmer, M. (2021). Non-Gaussian parameter inference for hydrogeological models using stein variational gradient descent. Water Resour Res, 57.

Weatherl, R (2020). Groundwater Contamination, Recharge, and Flow Dynamics in the Anthropogenic Environment (Doctoral dissertation)

Ebi, C., Schaltegger, F., Rüst, A., & Blumensaat, F. (2019). Synchronous LoRa mesh network to monitor processes in underground infrastructure. IEEE access, 7, 57663-57677.

Blumensaat, F., Dicht, S., & Ebi, C. (2019). Niedrigenergiefunk im Untergrund: Möglichkeiten und Grenzen einer neuen Daten-Fernübertragung in der Siedlungsentwässerung. Aqua & Gas, 99(3), 52-60.

Devasia-Metzger, J. R., Rieckermann, J., Ort, C., & Burkhardt, M. (2019). Vorhersage der Mecoprop-Dynamik im urbanen Regenwasserabfluss mit einem gekoppelten prozess-basierten Schmutzfrachtmodel. REGENWASSER WEITERDENKEN ?, 46.

Bryner, A. (2018). What happens underground made detectible. News Eawag

Keller, C. (2016). Understanding the urban drainage system of Fehraltorf. Master thesis Swiss Federal Institute of Technology (ETH) Zürich.

Krejci, V. (1994). Integrierte Siedlungsentwässerung: Fallstudie Fehraltorf. Eidg. Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz Eawag.

Krejci, V., Schilling, W., & Gammeter, S. (1994). Receiving water protection during wet weather. Water Science and Technology, 29(1-2), 219-229.


  • Existing loading situation and threats to groundwater in the model area determined.
  • Develop field methods and numerical modeling approaches.
  • Development of adaptive groundwater management that builds on existing and new hydrogeological knowledge and chemical analyses in drinking water wells and in the passage of surface water into the subsurface, and that exploits the potential of digitization in groundwater protection and contaminated site management.


The model area is characterized by highly urban and industrial land uses. These spatial structures have a great impact on the water supply and on the quality of the groundwater. In the drinking water extraction area, about 15 million m3 of drinking water are extracted per year by Hardwasser AG. The drinking water production area is geologically and hydrogeologically very complex. The groundwater circulates in a regional karst aquifer and an overlying unconsolidated aquifer, in which Rhine water is artificially infiltrated. Today, the water supplier recharges twice as much groundwater as is extracted. Since significantly more filtrate infiltrates than groundwater is withdrawn, a "groundwater mountain" is created in the area of the groundwater recharge zone, which protects the area from influences from the surrounding industrial areas and polluted sites. The area is subject to intensive hydrogeological investigation. In addition to the numerous compounds originating from the Rhine that can be detected in the groundwater, the chlorinated hydrocarbons hexachlorobutadiene and the isomer 1,1,4,4-tetrachlorobutadiene as well as tri- and tetrachloroethene deserve special mention. The "Basel-Landschaft Regional Water Supply 21" project and subsequent studies have developed methods for recording and assessing chemical water quality, identified more advanced treatment methods for removing trace contaminants in Hardwald, and developed an adaptive (quasi-) real-time online tool for effective groundwater management. More information on watershed characteristics and ongoing research can be found here.


  • Various measurements took place at piezometers, multilevel groundwater monitoring wells, cluster monitoring wells (piezometer nest), groundwater extraction wells, and the Rhine River infiltrate. In addition, various experiments and measurements were performed in groundwater, Rhine water infiltrate and soil. A list can be found below:
  • Infiltration volumes were determined using the P-Q (gauge-discharge) relationship and are measured continuously.
  • Direct-push soundings and grab sampling of soil samples to determine Corg and trace element distribution in soil, among other things.
  • Time-series measurements of trace elements, stable water isotopes, and noble gases at selected wells and piezometers.
  • Time series measurements of groundwater levels, electrical conductivities, and temperatures at selected wells and piezometers.
  • Deadline sampling at piezometers and wells with measurements of major ions, stable water isotopes, trace elements, VOCs.
  • Column elution test with soil material from infiltration channels to determine concentrations of chlorinated hydrocarbons (e.g. PER, TRI), among other things
  • Drilling campaigns including setting of multilevel and cluster (piezometer nest) groundwater monitoring networks.
  • Continuous pumping tests and labeling tests with uranine and naphthionate. Measurements of VOC, trace elements, stable water isotopes, major ions, noble gases.
  • Sampling for groundwater age dating (3H-3He).
  • Numerical groundwater modeling

Main contact:

Moeck, Christian, Dr.;

Schirmer, Mario, Prof. Dr.;

von Gunten, Urs, Prof. Dr.;

Moeck, C.; Popp, A. L.; Brennwald, M. S.; Kipfer, R.; Schirmer, M. (2021) Combined method of 3H/3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area, Journal of Contaminant Hydrology, 238, 103773 (13 pp.), doi:10.1016/j.jconhyd.2021.103773, Institutional Repository

Merle, T.; Knappe, D. R. U.; Pronk, W.; Vogler, B.; Hollender, J.; von Gunten, U. (2020) Assessment of the breakthrough of micropollutants in full-scale granular activated carbon adsorbers by rapid small-scale column tests and a novel pilot-scale sampling approach, Environmental Science: Water Research and Technology, 6(10), 2742-2751, doi:10.1039/D0EW00405G, Institutional Repository

Moeck, C.; Molson, J.; Schirmer, M. (2020) Pathline density distributions in a null-space Monte Carlo approach to assess groundwater pathways, Groundwater, 58(2), 189-207, doi:10.1111/gwat.12900, Institutional Repository

Popp, A. L.; Scheidegger, A.; Moeck, C.; Brennwald, M. S.; Kipfer, R. (2019) Integrating Bayesian groundwater mixing modeling with on-site helium analysis to identify unknown water sources, Water Resources Research, 55, 10602-10615, doi:10.1029/2019WR025677, Institutional Repository

Moeck, C.; Affolter, A.; Radny, D.; Dressmann, H.; Auckenthaler, A.; Huggenberger, P.; Schirmer, M. (2018) Improved water resource management for a highly complex environment using three-dimensional groundwater modelling, Hydrogeology Journal, 26, 133-146, doi:10.1007/s10040-017-1640-y, Institutional Repository

Moeck, C.; Radny, D.; Huggenberger, P.; Affolter, A.; Auckenthaler, A.; Hollender, J.; Berg, M.; Schirmer, M. (2018) Verteilung anthropogen eingetragener Stoffe im Grundwasser: ein Fallbeispiel aus der Nordschweiz, Grundwasser, 23(4), 297-309, doi:10.1007/s00767-018-0403-6, Institutional Repository

Moeck, C.; Radny, D.; Popp, A.; Brennwald, M.; Stoll, S.; Auckenthaler, A.; Berg, M.; Schirmer, M. (2017) Characterization of a managed aquifer recharge system using multiple tracers, Science of the Total Environment, 609, 701-714, doi:10.1016/j.scitotenv.2017.07.211, Institutional Repository

Merle, T.; Pronk, W.; von Gunten, U. (2017) MEMBRO3X, a novel combination of a membrane contactor with advanced oxidation (O3/H2O2) for simultaneous micropollutant abatement and bromate minimization, Environmental Science and Technology Letters, 4(5), 180-185, doi:10.1021/acs.estlett.7b00061, Institutional Repository

Moeck, C.; Radny, D.; Auckenthaler, A.; Berg, M.; Hollender, J.; Schirmer, M. (2017) Estimating the spatial distribution of artificial groundwater recharge using multiple tracers, Isotopes in Environmental and Health Studies, 53(5), 484-499, doi:10.1080/10256016.2017.1334651, Institutional Repository

von Gunten, U.; Merle, T.; Lee, M.; Pronk, W.; Hollender, J.; Vogler, B.; Gabriel, T.; Meier, T. (2017) Aufbereitung von Trinkwasser im Hardwald. Einschätzung der jetzigen Situation und möglicher zusätzlicher Aufbereitungsstufen, Aqua & Gas, 97(2), 21-28, Institutional Repository

Möck, C.; Radny, D.; Stoll, S.; Borer, P.; Rothardt, J.; Affolter, A.; Huggenberger, P.; Auckenthaler, A.; Hollender, J.; Berg, M.; Schirmer, M. (2017) Multivariate Statistik. Zur Optimierung des Wasserressourcen-Managements im Hardwald, Aqua & Gas, 97(2), 14-20, Institutional Repository

Moeck, C.; Radny, D.; Borer, P.; Rothardt, J.; Auckenthaler, A.; Berg, M.; Schirmer, M. (2016) Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment, Journal of Hydrology, 542, 437-449, doi:10.1016/j.jhydrol.2016.09.023, Institutional Repository

Moeck, C., & Radny, D. (2016): Regionale Wasserversorgung Basel-Landschaft 21, Teilprojekt 3: Trinkwassermanagement Hardwald, 1-216


  • Observing groundwater - surface water interactions in an alluvial aquifer (i.e., plant water uptake, isotopic signatures)
  • Understanding of flow and transport in multilayered porous aquifers
  • Assessing microbial transport in porous aquifers
  • Teaching groundwater hydrology and subsurface environmental processes


Kappelen (BE), Switzerland, is a test site (~0.5 km2) initiated in 1996 and located 15 km NW of the city of Bern, in the proximity of the village Lyss. The average annual precipitation is about 900 mm. The site is in a flat mixed forest bounded by agricultural land to the west and by the river Alte Aare to the east. Below the surface there are multiple layers of unconsolidated gravels of alluvial origin, mixed  with sands and silts (with a hydraulic conductivity of ~ 1·10-4 m/s). These gravels overlie a unit of fine-grained sands and silt/clay (with and hydraulic conductivity ranging from 5·10-4 to 1·10-2 m/s). The site includes a monitoring well network (which extends approximately 90 × 60 m2) consisting of seven 100 mm diameter well pairs of a deep and a shallow borehole accessing two different aquifers. Wells set in the upper part of the underlying aquifer have a 4 m long screens approximately between 4 to 8 m below the surface (m BGS), while those set in the deeper part have 4 m long screens, between 10 to 16 m BGS. Two additional deep wells constructed with identical characteristics, complete the network. The simple setup gives students an exceptional opportunity to be introduced to field work methods, allows observing surface water (Alter Aare) - groundwater interactions and microbial processes in a highly conductive alluvial aquifer. The Environmental Engineering Laboratory (ETH) operates this field laboratory. Further information about the test site can be found here


  • Meteorological station
  • Time series of groundwater levels in all wells as well as electrical conductivities and temperature measurements in selected wells
  • Time series of soil moisture and matric potential measurements across different depths (10, 20 40 cm).
  • Groundwater recharge calculations and numerical groundwater simulations

Main contacts:

Floriancic, Marius, Dr.;

Biolley, Lucien;

Jimenez-Martinez, Joaquin; and

Flynn, R., Hunkeler, D., Guerin, C., Burn, C., Rossi, P., and Aragno, M. (2004) Geochemical influences on H40/1 bacteriophage inactivation in glaciofluvial sands. Environmental Geology, 45(4), 504-517.

Flynn, R.M., 2003. Virus transport and attenuation in perialpine gravel aquifers (Doctoral dissertation, Université de Neuchâtel).

Oyono, E. (1996) Geophysical and hydraulic study of the hydrogeology of the Kappelen experimental site (Bern, Switzerland). MSc Thesis, University of Neuchatel, Switzerland (In French)


  • To develop hydrogeologic process understanding for a pre-alpine natural system.
  • Analysis of water balances and development of hydrologic models.
  • Process studies of energy and water exchange at the land surface.


The Rietholzbach research catchment is a small pre-alpine catchment in the upper reaches of the Thur River. The Rietholzbach catchment covers an area of approximately 3.31 km2 and an elevation range of 682 to 950 m. The local climate is characterized by temperate humid conditions with high precipitation in late spring and summer. The landscape is covered by grassland (more than 2/3 of the area is used for grazing) and forests. The geology consists of the Tertiary Upper Freshwater Molasse, which forms steep slopes and plateaus at higher elevations. In the valley bottom, glacial moraine deposits from the Pleistocene overlie the Upper Freshwater Molasse. The predominant soil types in the watershed are regosols on the Upper Freshwater Molasse and cambisols on the lower Pleistocene slopes. Gleysols and peaty soils are found in the shallow valley bottom areas. More information on watershed characteristics and ongoing research.


Hydrometeorological research in Rietholz Creek began in the late 1970s when the area was equipped with discharge gauging stations, a meteorological station, and a large weighing lysimeter (Büel field site). The Rietholzbach hydrometeorological site is managed by the Land-Climate Dynamics group of ETH Zurich. Measurements are continuously performed at two sites: "Büel" and "Mosnang". The "Büel" site is equipped with meteorological instruments and hydrological discharge and groundwater measuring devices. In Mosnang, the discharge of the entire Rietholzbach catchment is recorded based on a FOEN station. Data are recorded by several data loggers with a minimum hourly time interval. The current instrumentation is listed here. Also, from a large number of Piezometers, Eawag is carring out at 12 Piezometers groundwater real-time measurements along a transect near the Büel field site.

Main contact:

Seneviratne, Sonia I., Prof. Dr.;

Hirschi, Martin, Dr.;

Moeck, Christian, Dr.;

Widmoser, P., and Michel, D. (2021): Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland. Hydrology and Earth System Sciences, 25(3), 1151-1163, doi:10.5194/hess-25-1151-2021.

Huang, Y., Hendricks Franssen, H.-J., Herbst, M., Hirschi, M., Michel, D., Seneviratne, S. I., Teuling, A. J., Vogt, R., Schumacher, D., Pütz, T., and Vereecken, H. (2020): Evaluation of different methods for gap filling of long-term actual evapotranspiration time series measured by lysimeters. Vadose Zone Journal, 19:e20020, doi:10.1002/vzj2.20020.

Moeck, C., von Freyberg, J., and Schirmer, M. (2018): Groundwater recharge predictions in contrasted climate: The effect of model complexity and calibration period on recharge rates. Environmental Modelling & Software, 103, 74-89, doi:10.1016/j.envsoft.2018.02.005.

Widmoser, P. and Wohlfahrt, G. (2018): Attributing the energy imbalance by concurrent lysimeter and eddy covariance evapotranspiration measurements. Agricultural and Forest Meteorology, 263, 287-291, doi:10.1016/j.agrformet.2018.09.003.

Ruth, C. E., D. Michel, M. Hirschi, and S. I. Seneviratne (2018): Comparative study of a long-established large weighing lysimeter and a state-of-the-art mini-lysimeter. Vadose Zone Journal, 17(1), doi:10.2136/vzj2017.01.0026.

Hirschi, M., Michel, D., Lehner, I., and Seneviratne, S. I. (2017): A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol. Earth Syst. Sci., 21, 1809-1825, doi:10.5194/hess-21-1809-2017.

Ghasemizade, M., Baroni, G., Abbaspour, K., and Schirmer, M. (2017): Combined analysis of time-varying sensitivity and identifiability indices to diagnose the response of a complex environmental model. Environmental Modelling & Software, 88, 22-34, doi:10.1016/j.envsoft.2016.10.011.

Stähli, M. (2017): Hydrological significance of soil frost for pre-alpine areas. J. Hydrol., 546, 90-102, doi:10.1016/j.jhydrol.2016.12.032.

von Freyberg, J., Moeck, C., Schirmer, M. (2015): Estimation of groundwater recharge and drought severity with varying model complexity. J. Hydrol., 527, 844-857, doi:10.1016/j.jhydrol.2015.05.025.

von Freyberg, J., Rao, P. S. C., Radny, D., Schirmer, M. (2015): The impact of hillslope groundwater dynamics and landscape functioning in event-flow generation: a field study in the Rietholzbach catchment, Switzerland. Hydrogeology Journal, 23(5):935-948, doi:10.1007/s10040-015-1238-1.

Ghasemizade, M., Moeck, C., Schirmer, M. (2015): The effect of model complexity in simulating unsaturated zone flow processes on recharge estimation at varying time scales. J. Hydrol., 529, doi:10.1016/j.jhydrol.2015.09.027.

von Freyberg, J., Radny, D., Gall, H. E., Schirmer, M. (2014): Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition. Journal of Contaminant Hydrology, 169(0):62-74, doi:10.1016/j.jconhyd.2014.07.005.

Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U. (2013): Evapotranspiration amplifies European summer drought. Geophys. Res. Lett., 40(10):2071-2075, doi:10.1002/grl.50495.

Seneviratne, S.I., Lehner, I., Gurtz, J., Teuling, A.J., Lang, H., Moser, U., Grebner, D., Menzel, L., Schroff, K., Vitvar, T., Zappa, M. (2012): Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour. Res., 48, W06526, doi:10.1029/2011WR011749.

Mittelbach, H., Seneviratne, S.I. (2012): A new perspective on the spatio-temporal variability of soil moisture: Temporal dynamics versus time invariant contributions. Hydr. Earth Syst. Sci, 16, 2169-2179, doi:10.5194/hess-16-2169-2012.

Mittelbach, H., Lehner, I., Seneviratne, S.I. (2012): Comparison of four soil moisture sensor types under field conditions in Switzerland. J. Hydrology, 430, 39-49, doi: 10.1016/j.jhydrol.2012.01.041.

Ewen, T., Lehner, I., Seibert, J., Seneviratne, S.I. (2011): Climate patterns in the long-term hydrometeorological data series of the Rietholzbach catchment. Die Bodenkultur, 62(1-4): 53-58.

Mittelbach, H., Casini, F., Lehner, I., Teuling, A.J., Seneviratne, S.I. (2011): Soil moisture monitoring for climate research: Evaluation of a low cost sensor in the framework of the SwissSMEX campaign. J. Geophys. Res. - Atmosphere, 116, D05111.

Teuling, A.J., Lehner, I., Kirchner, J., Seneviratne, S.I. (2010): Catchments as simple dynamical systems: Experience from a Swiss pre-alpine catchment. Water Resour. Res., 46, W10502, doi:10.1029/2009WR008777.

Gurtz, J., M. Verbunt, M. Zappa, M. Moesch, F. Pos and U. Moser (2003): Long-Term Hydrometeorological Measurements and Model-Based Analyses in the Hydrological Research Catchment Rietholzbach. J. Hydrol. Hydromech., Slovakia, 51, 2003, 3, 162-174.

Gurtz, J., M. Zappa, K. Jasper, H. Lang, M. Verbunt, A. Badoux and T. Vitvar (2003): A Comparative Study in Modelling Runoff and its Components in Two Mountainous Catchments.  Hydrol. Process. 17, 297-311.

Gurtz, J., M. Verbunt, M. Zappa, M. Moesch and U. Moser (2003): Long-Term Hydrometeorological Measurements and Model Based Analyses in the Hydrological Research Catchment Rietholzbach. Proceed. of International Conference on "Interdisciplinary Approaches in Small Catchment Hydrology: Monitoring and Research. Demànovska dolina, Slovakia, September 25-28, 2002, 6pp.

Zappa, M., F. Pos, U. Strasser, P. Warmerdam and J. Gurtz (2003): Seasonal Water Balance of an Alpine Catchment as Evaluated by Different Methods for Spatially Distributed Snow Melt Modelling. Nordic Hydrology 34(3), 2003, 179-202.

Gurtz, J., M. Verbunt, K. Jasper, H. Lang and M. Zappa (2002): Spatial and temporal variations of hydrological processes in mountainous regions and their modelling. In Water Resources and Environment Research, Proceedings of ICWRER 2002, 22-25 July 2002 Dresden, Germany, Band 28, Volume I, pp. 47-51.

Gurtz, J., M. Zappa, K. Jasper, M. Verbunt, A. Badoux, T. Vitvar and H. Lang (2001): Modelling of runoff and its components and model validation in Swiss Pre-Alpine and Alpine catchments. International Workshop runoff generation and implications for river basin modelling, 9-12 October 2000, Freiburger Schriften zur Hydrologie 13, Freiburg i. Br., Germany,  206-220.

Arbeiten vor 2001 sind auf der ETH Seite der LandClim Gruppe, Sonia Seneviratne zu finden.


  • Groundwater - surface water interaction
  • Development and improvment of hydrlogical and hydrogeological models
  • Development of tracer and monitoring methods
  • Revitalization and influence on habitat water, sediment dynamics and water quality


The Thur River is located in northeastern Switzerland and has an approximate catchment area of 1700 km2. The Thur is the longest river in Switzerland with no major natural or artificial reservoirs along its entire length (~130 km), resulting in a pronounced seasonal variation in discharge. The Thur has three major tributaries: the Murg, the Necker and the Sitter.

The average precipitation in the Thur catchment area varies between 700 mm/year in the northern low mountain region and 2700 mm/year in the southern mountain region. The Thur rises in the southern, glacier-free, limestone-dominated foothills of the catchment near Säntis, where vegetation is sparse and soils are mostly flat. Here, productive groundwater resources are largely confined to small fluvio-glacial gravel and sand deposits, most of which occur in valley bottoms. The Pleistocene molasse sandstones, marls and conglomerates, located mainly in the northern part of the Thur catchment, are highly groundwater productive and host one of the largest groundwater systems in Switzerland.

Land use in the Thur catchment is dominated by agriculture (~ 60 %), with large areas of pasture. 30% of the land area is forested, the remaining ~10% consists of surface water and urban areas. Elevation in the Thur catchment varies between 2502 and 363 m a.s.l. The discharge of the Thur can vary by up to two orders of magnitude within a few hours, with discharge rates at the Andelfingen discharge station ranging from 3 to 1130 m3/s.


Various measurements in surface and groundwater. This includes water level, discharge, temperature, electrical conductivity, contaminants, hydrochemistry, isotopes, and geophysical, biological, and remote sensing data.

Main contact:

Schirmer Mario Prof. Dr.;

Burri, N. M., Moeck, C., & Schirmer, M. (2021). Groundwater recharge rate estimation using remotely sensed and ground-based data: A method application in the mesoscale Thur catchment. Journal of Hydrology: Regional Studies, 38, 100972.

Molin, M. D., Schirmer, M., Zappa, M., & Fenicia, F. (2020). Understanding dominant controls on streamflow spatial variability to set up a semi-distributed hydrological model: the case study of the Thur catchment. Hydrology and Earth System Sciences, 24(3), 1319-1345.

Martín, E. J., Ryo, M., Doering, M., & Robinson, C. T. (2018). Evaluation of restoration and flow interactions on river structure and function: Channel widening of the thur river, switzerland. Water, 10(4), 439.

Vetsch, D., Allen, J., Belser, A., Boes, R., Brodersen, J., Fink, S., ... & Weitbrecht, V. (2018). Lebensraum Gewässer-Sediment-dynamik und Vernetzung. Wasser Energie Luft, (1), 19-24.

Doulatyari, B., Betterle, A., Radny, D., Celegon, E. A., Fanton, P., Schirmer, M., & Botter, G. (2017). Patterns of streamflow regimes along the river network: The case of the Thur river. Environmental Modelling & Software, 93, 42-58.

Paillex, A., Schuwirth, N., Lorenz, A. W., Januschke, K., Peter, A., & Reichert, P. (2017). Integrating and extending ecological river assessment: Concept and test with two restoration projects. Ecological Indicators, 72, 131-141.

Viswanathan, V. C., Jiang, Y., Berg, M., Hunkeler, D., & Schirmer, M. (2016). An integrated spatial snap-shot monitoring method for identifying seasonal changes and spatial changes in surface water quality. Journal of Hydrology, 539, 567-576.

Gouskov, A., & Vorburger, C. (2016). River fragmentation and fish population structure: a comparison of three Swiss midland rivers. Freshwater Science, 35(2), 689-700.

Viswanathan, V. C., Molson, J., & Schirmer, M. (2015). Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland. Science of the Total Environment, 532, 91-102.

Peter, S., Mächler, L., Kipfer, R., Wehrli, B., & Durisch-Kaiser, E. (2015). Flood-Controlled Excess-Air Formation Favors Aerobic Respiration and Limits Denitrification Activity in Riparian Groundwater. Frontiers in Environmental Science, 3, 75.

Rodríguez-Murillo, J. C., Zobrist, J., & Filella, M. (2015). Temporal trends in organic carbon content in the main Swiss rivers, 1974-2010. Science of the Total Environment, 502, 206-217.

Bahnmüller, S., von Gunten, U., & Canonica, S. (2014). Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents. Water research, 57, 183-192.

Diem, S., Renard, P., & Schirmer, M. (2014). Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times. Journal of Hydrology, 510, 393-402.

Rudolf von Rohr, M. (2014). Effects of climate change on redox processes during riverbank filtration: Field studies and column experiments (Doctoral dissertation, ETH Zurich).

Schirmer, M., Luster, J., Linde, N., Perona, P., Mitchell, E. A., Barry, D. A., ... & Durisch-Kaiser, E. (2014). Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration-the Thur River case study. Hydrology and Earth System Sciences, 18(6), 2449-2462.

Diem, S., Cirpka, O. A., & Schirmer, M. (2013). Modeling the dynamics of oxygen consumption upon riverbank filtration by a stochastic-convective approach. Journal of hydrology, 505, 352-363.

Diem, S., Von Rohr, M. R., Hering, J. G., Kohler, H. P. E., Schirmer, M., & Von Gunten, U. (2013). NOM degradation during river infiltration: Effects of the climate variables temperature and discharge. Water research, 47(17), 6585-6595.

Diem, S. (2013). Riverbank filtration within the context of river restoration and climate change (Doctoral dissertation, Université de Neuchâtel).

Huntscha, S., Rodriguez Velosa, D. M., Schroth, M. H., & Hollender, J. (2013). Degradation of polar organic micropollutants during riverbank filtration: complementary results from spatiotemporal sampling and push-pull tests. Environmental science & technology, 47(20), 11512-11521.

Karaus, U., Larsen, S., Guillong, H., & Tockner, K. (2013). The contribution of lateral aquatic habitats to insect diversity along river corridors in the Alps. Landscape ecology, 28(9), 1755-1767.

Mächler, L., Brennwald, M. S., & Kipfer, R. (2013). Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone. Environmental science & technology, 47(13), 7060-7066.

Mächler, L., Peter, S., Brennwald, M. S., & Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, 49(10), 6847-6856.


Doetsch, J., Linde, N., Vogt, T., Binley, A., & Green, A. G. (2012). Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. Geophysics, 77(5), B207-B218.

Hayashi, M., Vogt, T., Mächler, L., & Schirmer, M. (2012). Diurnal fluctuations of electrical conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange. Journal of Hydrology, 450, 93-104.

Peter, S., Shen, Y., Kaiser, K., Benner, R., & Durisch?Kaiser, E. (2012). Bioavailability and diagenetic state of dissolved organic matter in riparian groundwater. Journal of Geophysical Research: Biogeosciences, 117(G4).

Peter, S., Koetzsch, S., Traber, J., Bernasconi, S. M., Wehrli, B., & DURISCH?KAISER, E. D. I. T. H. (2012). Intensified organic carbon dynamics in the ground water of a restored riparian zone. Freshwater Biology, 57(8), 1603-1616.

Peter, S., Rechsteiner, R., Lehmann, M. F., Brankatschk, R., Vogt, T., Diem, S., ... & Durisch-Kaiser, E. (2012). Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones. Biogeosciences, 9(11), 4295-4307.

Vogt, T., Schirmer, M., & Cirpka, O. A. (2012). Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrology and Earth System Sciences, 16(2), 473-487.

Diem, S., Vogt, T., & Hoehn, E. (2010). Spatial characterization of hydraulic conductivity in alluvial gravel-and-sand aquifers: a comparison of methods. Grundwasser, 15(4), 241-251.

Hoehn, E., & Scholtis, A. (2011). Exchange between a river and groundwater, assessed with hydrochemical data. Hydrology and Earth System Sciences, 15(3), 983-988.

Linde, N., Doetsch, J., Jougnot, D., Genoni, O., Duerst, Y., Minsley, B. J., ... & Luster, J. (2011). Self-potential investigations of a gravel bar in a restored river corridor. Hydrology and Earth System Sciences, 15(3), 729-742.

Pasquale, N., Perona, P., Schneider, P., Shrestha, J., Wombacher, A., & Burlando, P. (2011). Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor. Hydrology and Earth System Sciences, 15(4), 1197-1212.

Wehrli, B., & Durisch-Kaiser, E. (2011). Denitrification hot spot and hot moments in a restored riparian system. Gq10: groundwater quality management in a rapidly changing world. Wallingford: International Association of Hydrological Sciences. p, 433-6.

Peña-Haro, S., Pulido-Velazquez, M., Yang, H., Liu, J., & Llopis-Albert, C. (2010, June). Application of an agronomic model to determine optimal management strategies to reduce nitrate concentrations in groundwater. In Groundwater Quality Management in a Rapidly Changing World 7th International IAHS Groundwater Quality Conference, held in Zurich, Switzerland, 13e18 June.

Rau, C., & Peter, A. Fliessgewässerrevitalisierungen-Das grosse Potenzial kleiner Bäche.

Schneider, P., Vogt, T., Schirmer, M., Doetsch, J., Linde, N., Pasquale, N., ... & Cirpka, O. A. (2011). Towards improved instrumentation for assessing river-groundwater interactions in a restored river corridor. Hydrology and Earth System Sciences, 15(8), 2531-2549.

Vogt, T., Schneider, P., Peter, S., Durisch-kaiser, E., Schirmer, M., & Cirpka, O. (2011). Assessing groundwater travel times and biogeochemical processes during riverbank filtration under the aspect of river restoration. IAHS-AISH publication, 342, 401-404.

Diem, S., Vogt, T., & Hoehn, E. (2010). Räumliche charakterisierung der hydraulischen leitfähigkeit in alluvialen schotter-grundwasserleitern: Ein methodenvergleich. Grundwasser, 15(4), 241-251.

Diem, S., Vogt, T., & Hoehn, E. (2010). Spatial characterization of hydraulic conductivity in alluvial gravel-and-sand aquifers: a comparison of methods. Grundwasser, 15(4), 241-251.

Linde, N., Coscia, I., Doetsch, J. A., Greenhalgh, S. A., Vogt, T., Schneider, P., & Green, A. G. (2010). Hydrogeophysical studies in unrestored and restored river corridors of the Thur River, Switzerland. first break, 28(8).

Peter, A. (2010). A plea for the restoration of Alpine rivers: Basic principles derived from the "Rhone-Thur" Case Study. In Alpine waters (pp. 247-260). Springer, Berlin, Heidelberg.

Rau, C. S., & Köhler, H. R. (2010). Ökologische Erfolgskontrolle von Revitalisierungsmassnahmen an kleinen Bächen (Doctoral dissertation, Eawag).

Rodríguez, D. M., Hollender, J., & Huntscha, S. (2010). Tracing Micropollutants During Riverbank Filtration Under Restored and Non-restored Conditions at River Thur (Doctoral dissertation, ETH).

Schäppi, B., Perona, P., Schneider, P., & Burlando, P. (2010). Integrating river cross section measurements with digital terrain models for improved flow modelling applications. Computers & Geosciences, 36(6), 707-716.

Vogt, T., Schneider, P., Hahn-Woernle, L., & Cirpka, O. A. (2010). Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. Journal of Hydrology, 380(1-2), 154-164.

Vogt, T., Hoehn, E., Schneider, P., Freund, A., Schirmer, M., & Cirpka, O. A. (2010). Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances in Water Resources, 33(11), 1296-1308.

Vogt, T., Hoehn, E., Schneider, P., & Cirpka, O. A. (2009). Untersuchung der Flusswasserinfiltration in voralpinen Schottern mittels Zeitreihenanalyse. Grundwasser, 14(3), 179-194.

Weber, C., Schager, E., & Peter, A. (2009). Habitat diversity and fish assemblage structure in local river widenings: a case study on a Swiss river. River Research and Applications, 25(6), 687-701.

Acuña, V., Wolf, A., Uehlinger, U., & Tockner, K. (2008). Temperature dependence of stream benthic respiration in an Alpine river network under global warming. Freshwater Biology, 53(10), 2076-2088.

Peter, A., Schager, E., & Weber, C. (2008). Fischokologische Anforderungen an den Wasserbau. In Mitteilungen 208. Internationales Symposium Zürich: neue inforderungen an den wasserbau.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., ... & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4), 413-430.

Cirpka, O. A., Fienen, M. N., Hofer, M., Hoehn, E., Tessarini, A., Kipfer, R., & Kitanidis, P. K. (2007). Analyzing bank filtration by deconvoluting time series of electric conductivity. Groundwater, 45(3), 318-328.

Hoehn, E. (2007). Untersuchungsmethoden der Flussinfiltration: In der Nähe von Grundwasserfassungen. GWA. Gas, Wasser, Abwasser, 87(7), 497-505.

Schweizer, S., Borsuk, M. E., & Reichert, P. (2007). Predicting the morphological and hydraulic consequences of river rehabilitation. River research and Applications, 23(3), 303-322.

Spörri, C., Borsuk, M., Peters, I., & Reichert, P. (2007). The economic impacts of river rehabilitation: a regional input-output analysis. Ecological Economics, 62(2), 341-351.

Woolsey, S., Capelli, F., Gonser, T. O. M., Hoehn, E., Hostmann, M., Junker, B., ... & Peter, A. (2007). A strategy to assess river restoration success. Freshwater Biology, 52(4), 752-769.

Yang, J., Reichert, P., & Abbaspour, K. C. (2007). Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland). Water resources research, 43(10).

Rohde, S., Hostmann, M., Peter, A., & Ewald, K. C. (2006). Room for rivers: An integrative search strategy for floodplain restoration. Landscape and Urban Planning, 78(1-2), 50-70.

Capelli, F. (2005). Indikatoren für die Evaluation von Revitalisierungsprojekten in der Praxis. Eine Pilotstudie an der Thur., EAWAG, Kastanienbaum, 83.

Hostmann, M., Bernauer, T., Mosler, H. J., Reichert, P., & Truffer, B. (2005). Multi-attribute value theory as a framework for conflict resolution in river rehabilitation. Journal of Multi?-Criteria Decision Analysis, 13(2?3), 91-102.

Hostmann, M., Borsuk, M., Reichert, P., & Truffer, B. (2003). Stakeholder values in decision support for river rehabilitation. Large rivers, 491-505.

Hostmann, M., Buchecker, M., Ejderyan, O., Geiser, U., Junker, B., Schweizer, S., ... & Zaugg Stern, M. (2005). Wasserbauprojekte gemeinsam planen. Handbuch für die Partizipation und Entscheidungsfindung bei Wasserbauprojekten.

Peter, A., Kienast, F., & Woolsey, S. (2003). River rehabilitation in Switzerland: scope, challenges and research. Large Rivers, 643-656.

Projektes, E. P. D. R. T. (2005). Handbuch für die Erfolgskontrolle bei Fliessgewässerrevitalisierungen.

Schweizer, S., Borsuk, M. E., & Reichert, P. (2004). Predicting the hydraulic and morphological consequences of river rehabilitation.

Hostmann, M. (2003). Die Thur in einem neuen Gewand. Natur und Mensch, 5, 8-13.

Baumann, N. (2003). Wirkungen von Flussgerinneaufweitungen auf Vögel der Uferpionierstandorte: insbesondere Flussuferläufer (Actitis hypoleucos) und Flussregenpfeifer (Charadrius dubius) (Doctoral dissertation, Institut für Natur-, Landschafts-und Umweltschutz, Biogeographie).

Frey, M., Schmid, M., & Wüest, A. (2003). Einfluss von Aufweitungen auf das Temperaturregime der Thur. EAWAG Kastanienbaum.

Gasser, D., Hauser, L., Quirici, R., Preuschoff, P., Schläpfer, M., Wegmann, R., ... & Wehrli, B. (2003). Einfluss von Klima-und Landnutzungsänderungen auf den Abfluss der Thur. Gruppe "Klima und Hydrologie" der Fallstudie Thur, ETH Zürich, WEL, 95, 337-343.

Hörger, C., & Keiser, Y. (2003). Verbreitung und Habitatsansprüche der Fische in der Thur unter spezieller Berücksichtigung des Strömers (Leuciscus souffia). ETH Zürich, Abteilung für Umweltnaturwissenschaften.

Uehlinger, U., & Robinson, P. D. C. (2003). Spatial-temporal Distribution of Periphyton in the lower parts of the River Thur: The Influence of Morphology, Hydraulics and Hydrology.

Katulic, S. (2003). Kleinsäuger in unterschiedlichen Habitattypen von Flussauen (Thur (Doctoral dissertation).

Ejderyan, O., & Müller-Böker, U. (2009). Une renaturation en béton!: comprendre la participation et la nature dans les renaturations de cours d'eau suisses au regard d'une théorie de la pratique: Rhone-Thur Projekt (Vol. 24). Geographisches Institut, Abteilung Humangeographie, Universität Zürich.

einer Flusslandschaft, F. T. P. (2003). Der Einfluss veränderter Klimabedingungen und veränderter Landnutzung auf die Thur.

Baur, H. (2002). Habitat-und Makrozoobenthosdiversität entlang drei alpiner Flüsse (Doctoral dissertation, EAWAG, Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz).

Behra, R., Landwehrjohann, R., Vogel, K., Wagner, B., & Sigg, L. (2002). Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquatic sciences, 64(3), 300-306.

Schwevers, U., & Adam, B. (2010). Bewertung von Auen anhand der Fischfauna-Machbarkeitsstudie. BfN.

Uhlmann, V. (2001). Die Uferzoozönosen in natürlichen und regulierten Flussabschnitten (Doctoral dissertation, Diplomarbeit, ETH Zürich).

Sigg, L., Xue, H., Kistler, D., & Sshönenberger, R. (2000). Size fractionation (dissolved, colloidal and particulate) of trace metals in the Thur River, Switzerland. Aquatic Geochemistry, 6(4), 413-434.

Uehlinger, U. (2000). Resistance and resilience of ecosystem metabolism in a flood?prone river system. Freshwater Biology, 45(3), 319-332.

Frutiger, A. (1996). Embryogenesis of Dinocras cephalotes, Perla grandis and P. marginata (Plecoptera: Perlidae) in different temperature regimes. Freshwater biology, 36(3), 497-508.

Eglin, S. W. T. (1990). Die Zusammensetzung und kleinräumige Verteilung der Makroinvertebratenzoenose eines natürlichen, voralpinen Fliessgewässers (Thur) in Abhängigkeit vom Nahrungsangebot und der Sedimentstruktur (Doctoral dissertation, ETH Zurich).

Sieber, U. W. (1988). Untersuchungen zur Oekologie der Ciliaten der Klasse Oligohymenophora in einem schweizerischen Fliessgewässer (Thur) (Doctoral dissertation, ETH Zurich).

Letzte Änderung: 01.02.2022